
Synopsis
An economic argument is presented for the incorpora-
tion of quantitative modelling of the uncertainty of
grade, tonnage and geology into open-pit design and
planning. Two new implementations of conditional
simulation—the generalized sequential Gaussian simu-
lation and direct block simulation—are outlined. An
optimization study of a typical disseminated, low-
grade, epithermal, quartz breccia-type gold deposit is
used to highlight the differences between the financial
projections that may be obtained from a single orebody
model and the range of outcomes produced when, for
example, fifty deposit simulations are run. The effects
on expectations of net present value, production cost
per ounce, mill feed grade and ore tonnage are pre-
sented as examples and periods with a high risk of
negative discounted cash flow are identified. Further
integration of uncertainty into optimization algorithms
will be needed to increase their efficacy.

The quantification of uncertainty and risk has major impli-

cations for open-pit design and production scheduling as it

relates to the management of cash flows in the order of

millions of dollars. Optimization in mine planning has been

accepted as a set of techniques that introduce analytical

mathematical methods into planning.1 The most common

approach in open-pit design and planning is based on the

Lerchs–Grossmann three-dimensional graph theory, imple-

mented in industry applications as the nested Lerchs–

Grossmann algorithm.2,3,4 A key concern when dealing with

risk and uncertainty, particularly considering the financial

implications of decisions made on the basis of optimization

studies, may be expressed by the statement: ‘I would rather

be approximately right than precisely wrong’. This statement

hints at a way to address the uncertainty present in any mine

design and plan. To deal with, manage and benefit from risk

requires further development of quantitative methods used in

planning that can minimize the chances of a single, precisely

wrong expectation. As a result, strategic investments can be

sheltered and operations perform closer to their potential.

Traditional evaluation of mining projects includes drilling

and sampling, generating a representative orebody model,

deciding mining and processing methods, assessing capital

and operating costs and developing a technical and financial

life-of-mine plan. In addition, to assess the worth of a project,

summary indicators, which include total project size, capital

requirements and net present value, are developed and used

to generate best decision-making options that result in maxi-

mum expected project utility.5 Although complex in practice,

this evaluation process can be seen as a combination of

management strategy with a critical understanding and

assessment of uncertainty and risk from technical, financial

and environmental sources. A critical source of technical risk

is in the expected ore grade and tonnage. The ability to

model and integrate this risk into optimization and planning

is of paramount importance and allows a more informed

approach to be taken to the valuation of an asset or design

and management of a project.

The presence of geological risk in mining projects is well

known and appreciated. During the past few years evolving

technologies have allowed direct modelling of geological risk.

As a result, several issues have been raised, including the

integration of grade uncertainty into pit optimization and

recoverable reserves,6,7 technologies and algorithms for geo-

logical risk modelling in pit optimization and production

scheduling,8 risk in mineral projects and ultimate pit limits,9

impact of high-risk grade zones in optimal pit limits10 and risk

analysis for production scheduling.11,12 Despite these devel-

opments there is an increasing need for further understanding

of the main limitations of the traditional, non-risk-based,

open-pit optimization approaches and their potential effects

on project decision-making.

In the present contribution consideration is given, first, to

key reasons why there are benefits from understanding and

quantifying uncertainty and risk. A new, fast and efficient con-

ditional simulation framework for the modelling of geological

uncertainty in an industrial environment is then outlined.

Examples of the reasons why one is interested in quantifying

risk in optimization studies are provided, using a study from a

typical Australian low-grade gold deposit. Finally, potential

future needs are discussed.

Key reasons to undertake quantitative modelling of
geological uncertainty and risk

Quantification of geological uncertainty and risk can enhance

mining project development and mining operations substan-

tially. Modern project valuation frameworks can elucidate the

paramount positive economic effects of the quantification of

uncertainty and risk. One such is the ‘real options’ frame-

work,13,14 a key characteristic of which is the ability to

integrate and manage uncertainty and risk and thus enable

the sheltering of strategic investments and exposure of their

upside potential. In simple terms, real options may be

described as the ability to assess the value of starting a project

that gives the right, but not the obligation, to commence

operations at a cost of, say, $7 000 000 six months from now

and/or to assess the value of delaying production to obtain

additional information to reduce uncertainty or to quantify

the value of building in the flexibility to manage uncertainty

and risk at any level or aspect of an exploration or mining

venture. Fig. 1 summarizes a comparison between a tradi-

tional valuation method that does not account for uncertainty
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and risk, discounted cash flow (DCF) analysis and real

options in assessing current asset value. The figure shows an

increase in asset value from the simple step of explicitly quan-

tifying uncertainty and integrating the data into financial

analysis and decision-making.

The need to quantify uncertainty in asset valuation and

decision-making translates to the need to quantify uncer-

tainty and risk in any pertinent components of open-pit

design and long-term planning. Project risk may arise from

three main sources—technical (geological and mining), finan-

cial and environmental. The major source of technical risk is

uncertainty in grades, tonnage, geology and geomechanics.

Geological risk is seen as the major contributor to not meet-

ing project expectations. For example, at the early stages of a

project, when establishing investor confidence and repayment

of development capital are vital, Vallee15 noted that ‘… in the

first year of operation after start-up, 60% of mines surveyed

had an average rate of production less than 70% of designed

capacity’. Although shortfalls in production are also due to

problems in scale-up from pilot-plant to commercial plant,

the quantity and grade of ore are a major contributor to

potential shortfalls. Shortfalls from mine production predic-

tions are also common in later stages of production and are

attributed substantially to geological causes.16

For any open-pit design uncertainty over grades, tonnages

or geology can be readily modelled and integrated into the

optimization and design process so as to provide accurate

modelling and quantification of uncertainty and risk, rather

than a single estimate assessment, for any pertinent para-

meter—including the project NPV, expected cash flows,

recoverable quantity of mineral and expected production

costs. This provides the ability to develop a different, techni-

cally sound, risk-based approach to valuing an asset, operation

or project as well as quantify, and thus minimize, risk in

selection of an appropriate pit design.

Fig. 2 illustrates an assessment of uncertainty for a para-

meter that may, for example, be the ore reserves in a gold

mine. Accounting for uncertainty requires its accurate quan-

tification; thus, technical work and evaluation should stress

accurate modelling and quantification of uncertainty and risk,

not a single estimate or a qualitative-type assessment. The

technical ability to model uncertainty quantitatively with as

much accuracy as possible with the information available at a

given time is of paramount importance. Conditional simula-

tion technologies offer a first, key step in the modelling of

geological risk and are discussed next.

Models of grade uncertainty for the industrial
environment

Conditional simulation (CS) is a Monte Carlo-type simulation

approach17 developed for modelling uncertainty in spatially

distributed attributes, such as pertinent characteristics of

mineral deposits. The idea is to generate equally probable

realizations (representations) of the in-situ orebody grade and

material type variability. All realizations of the orebody are

based on and reproduce the available data, their distribution

and spatial continuity as well as any other information avail-

able for the deposit and attribute under consideration. A large

collection of conditionally simulated deposits captures the

uncertainty about the orebody and attribute of interest.

Examples of the approach and comparisons with traditional

orebody modelling can be found elsewhere.18

A bottleneck for the conditional simulation technologies

and their use in industry is computing speed and efficiency.

Despite advances in the computing technologies readily

available in desktop computers, simulating an orebody repre-

sented by several millions of nodes per realization (for

example, large orebodies may require up to 108 nodes) is not

a fast and simple task that can be performed routinely. An

additional complication is that realizations are generated at a

quasi-point support and are ‘reblocked’ to the block sizes

needed for various tasks, such as pit optimization and pro-

duction scheduling studies. Two new implementations of

conditional simulation are outlined here. Both have been

developed to address industry’s needs for computational effi-

ciency and applications with finite memory requirements.

The generalized sequential Gaussian simulation, or

GSGS,19 is a general form of the well-known sequential

Gaussian simulation, or SGS.20 GSGS replaces the node-by-

node sequential process in SGS with a group of nodes and

the simulation is carried out for groups of nodes simultane-

ously. The method capitalizes on the fact that, in practice, the

simulation grid is usually large and dense, which usually leads

to overlapping of neighbourhoods among the closest nodes.

The theoretical foundations of the approach are based on the

group decomposition of the conditional probability distribu-

tion of the attribute considered and the equivalence of SGS

to the simulation method based on the so-called LU decom-

position of the covariance matrix. The GSGS algorithm for a

grid of N nodes divided into k groups of nodes proceeds thus:

(1) define a path visiting each group of k nodes of the grid;

(2) find a neighbourhood for the current group; (3) generate

the simulated values of the current group using the LU

method; (4) add the simulated values of the current group

into the data-set; and (5) loop until all groups, thus grid

nodes, are simulated.

Depending on the design of the groups of nodes versus

the number of conditioning data in the neighbourhood the

method is up to ten times faster than the more traditional

SGS point-by-point algorithm. In addition, the GSGS algo-

rithm is less demanding in terms of memory requirements.
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Fig. 2 Accounting for uncertainty strives for accurate quantifica-

tion of uncertainty for the various components that affect mining

decisions. This increases the chances of including the actual, but

unknown, values in the uncertainty models, thus benefiting asset

valuation and subsequent decisions

Fig. 1 Accounting for uncertainty increases asset value: example

using ‘real options’ (solid black line) whereby possible future changes

(uncertainty) are accounted for, versus traditional (deterministic)

DCF analysis (broken grey line)



Note that if the number of points in the group is one, GSGS

is identical to SGS, whereas if all nodes belong to one group,

GSGS is identical to the LU simulation method.

Although substantially more efficient than traditional

approaches, the algorithm may still be considerably improved.

Consider, for example, a large domain where millions of

simulated node values need to be retained as conditional

information. The memory requirements alone are huge, not

to mention performance losses due to increased search times.

To address these issues a direct block support simulation

method can be developed on the basis of some of the ideas in

the GSGS algorithm. Specifically, a direct block simulation

method is developed such that after the simulation of the

internal points of each block (group of nodes in GSGS) the

simulated block value is calculated and the point values are

discarded. The simulated block value is then added to

the conditioning data-set. To integrate the block support

conditioning data the algorithm is developed in terms of

a joint-simulation.21 The second variable relates to the

block values sequentially derived throughout the simulation

process. The algorithm provides the means to simulate

several hundreds of blocks per second and is substantially

faster that any point conditional simulation combined with

reblocking.

Fig. 3(a) shows a data-set of 255 samples used to simulate

780 block grades. Two images of conditional simulations

were generated to permit comparison. The first image is

based on point simulation followed by reblocking of 10 × 10

nodes and is shown in Fig. 3(b). The second simulation

image shown in Fig. 3(c) is generated using the direct block

simulation approach discussed above, the same block size as

previously and 100 points in each block. The direct block

simulation reduced the processing time from the traditional

point simulation by approximately 2000 nodes per second.

Reproduction of the data statistics is not affected and is

identical in the two cases. To compare the point-by-point and

then reblocking approach with the more efficient direct block

simulation Fig. 4 presents the variograms of the two simula-

tion approaches at the block support scale and calculated for

five realizations. The comparison with the corresponding var-

iogram model suggests that the two approaches reproduce the

spatial continuity of the grades equally well.

The direct block simulation method is substantially faster

than the point-by-point simulation, more efficient in terms of

computing requirements and reliable in terms of reproduc-

tion of the sample statistics. An additional advantage is the

ability to simulate models with different block sizes and

shapes, which is often required to comply with the geometri-

cal complexity of typical geological domains.

Avoiding single and possibly precisely wrong
options: quantification of geological uncertainty in
examples

The availability of conditional simulation technologies allows

the integration of geological uncertainty into optimization

studies and related decision-making. This differs from the

traditional grade-estimation model used in pit optimization

studies. The following examples elucidate the differences.

The examples given here are taken from the optimization

study of a typical, disseminated, low-grade, epithermal,

quartz breccia-type gold deposit, hosted in intermediate–

felsic volcanic rocks and sediments. Free milling and refrac-

tory ores are to be mined by open-pit methods. Ore is to be

processed via a carbon-in-leach processing plant, with a flota-

tion circuit added for the refractory ore. The question of

geological uncertainty and risk in the design, planning and

production expectations is accentuated by the generally low

ore reserve grade and a variable, depressed metal price. The

example starts with the traditional way of pit optimization, in

which an estimated orebody model of the deposit is used to
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Fig. 3 (a) Data-set with 255 samples; (b) conditional simulation generated using traditional point-by-

point approach; (c) realization generated using direct simulation algorithm

Fig. 4 Variogram reproductions corresponding to (a) proposed

direct block simulation algorithm (group size 100) and (b) tradi-

tional point-by-point approach (group size 1)
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produce a design. Subsequently, 50 realizations of the deposit

are developed to quantify geological risk for the given mine

design and long-term mine plan. This is implemented by

replacing the estimated orebody model with each one of the

50 simulations and rerunning the optimization while the

other mining and economic parameters are kept the same.

Fig. 5 shows the analysis of net present value. Orebody

simulations have produced a range of financial outcomes,
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Fig. 6 Distribution of NPV from conditionally simulated realizations and kriged orebody estimates

NPV, $Aus 106

11 13 15 17 19 21 23

± 1 std dev

Fig. 5 Geological uncertainty and risk in NPV of disseminated gold deposit

Optimized pit shells

Pit design and production
schedules might typically be
found on pit shell 41,with
highest NPV.
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Fig. 7 Geological uncertainty in cost of production per ounce of metal produced

Optimized pit shell

CS realizations

Ordinary kriging

Cost/oz gold produced
Kriged model $140.00
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Mean $436.60
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which in this example is in contrast to the single estimate

expected from the traditional approach. The project NPV is

shown to vary drastically, with about 80% of the outcomes

covering a range of $Aus. 5 000 000. The NPV outcome for

the traditional approach is shown to be higher than the

ninety-fifth quantile of the distribution, i.e. there is a 95%

probability of the project returning a lower NPV than

predicted by the estimated orebody model. The median

NPV from the conditional simulations is $Aus. 16 000 000,

approximately 25% lower than the estimated model indi-

cates; and the worst-case scenario from the simulations has

an NPV 45% lower than the estimated orebody. Fig. 6 shows

the distribution of project NPV more clearly and summarizes

the distribution of possible project NPV for the pit design

considered.

The operating cost of production may be cited as a bench-

mark when comparing gold-mining projects. Fig. 7 shows the

geological uncertainty and risk integrated into the expected

production cost per ounce of gold produced from the deposit

considered here and the given mine layout. The analysis in

Fig. 7 shows that the cost of production per ounce of gold is

most likely to be underestimated from the kriged grade

model. However, the small range of outcomes would provide

confidence that the cost of production for the project is not

likely to exceed $Aus. 463/oz gold. This may be very useful

quantitative information to have if the company involved in

the project is sensitive to production cost variation. The cost

per ounce is shown in Fig. 7 in terms of nested pit shells for

comparison with the NPV chart. Note that the range, or

spread, of cost per ounce outcomes is fairly constant across

all the pit optimization shells. This shows that the cost of pro-

duction is insensitive to the size of the open-pit and is not

significantly improved by increasing the scale of the mining

operation. The cost per ounce on a period or annual basis

could also be calculated to investigate the cost profile over

time.

The physical parameters of ore tonnes mined and milled

are also major sources of risk, particularly in the early years of

a project. The risk of designing and constructing a plant

unsuited to the available ore feed will be better understood

when the uncertainty in the feed quantity and grade is known.

As an example, uncertainty in the mill feed grade to a gold

plant was analysed. The analysis in Fig. 8 is the average mill

feed grade for the life of the project. The figure shows a large

range of possible average feed grades for the project, informa-

tion useful to have when designing a processing plant.

The conjugate partner to mill feed grade is the ore

tonnage, shown in Fig. 9. The simulated realizations show

consistently lower total ore tonnage, down by an average of

12.5% compared with the kriged model. The variable grade

and lower tonnage of mill feed indicated by the simulated

realizations suggest that this project will have difficulty in

achieving scheduled mill throughput and feed grade for the

life of the mine if based on the kriging model. The lower ore

tonnage indicated from the simulations may suggest a design

change for the processing plant.

In addition to sensitivity analysis on key ‘life of mine’

project parameters, geological uncertainty in the mine pro-

duction schedule can be quantified. Consider, for example,

the DCF for a mine calculated for production periods of

three months. What variation is expected to arise from a pro-

duction schedule DCF owing to geological uncertainty in the

ore-reserve estimation model? Are there periods of greater
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Fig. 8 Average grade of mill feed ore over life of mine for series of

orebody realizations and for single estimate

Fig. 9 Average ore tonnages available to mill over life of mine for

series of CS realizations and for single kriging estimate

Fig. 10 Distribution of outcomes for discounted cash flow by three-month production periods

Last year of production:
cash flow highly likely
to be negative

First two years of production

(Refer distribution curve
for this period)

Cash flow—variation from
$1700000 to $3700000
for this period

CS realizations

Ordinary kriging



risk, and when do such periods occur? Fig. 10 demonstrates

the uncertainty in quarterly DCF, in comparison with the

single estimate used in Figs. 8 and 9. Fig. 10 shows that the

anticipated cash flow for this minable reserve has a reasonable

probability of materializing for accounting periods during the

first two years of this project. It is more likely that cash flows

will be less than forecast, but there is a small probability that

cash flows would actually exceed expectations during the first

two years. The probability of the last year of production

achieving the forecast cash flow is very low; it is much more

likely that the DCF during the last year (periods 8–12) will be

negative. The cash-flow distribution in period 10 is shown as

a probability density function in Fig. 11.

The variation in DCF outcomes, shown in Fig. 10, high-

lights high-risk periods during the life of the project. The

distribution of DCF for a single period, shown in Fig. 11,

quantifies the risk of negative cash flows in the last stages of

this production schedule. Having access to such information

prior to mining is a valuable asset when determining such key

parameters as the ultimate size of the project and the risk pro-

file for that life.

Conclusions

Geological uncertainty as an element in key parameters of

open-pit mining projects can be quantified by conditional

simulation combined with open-pit optimization studies.

Having an accurate assessment of uncertainty arising from

grade variability in the ore reserve allows risk in a mining

project to be quantified and considered in decision-making

processes. This knowledge adds value to a project before the

ore reserve is depleted and before development capital is

committed to the project. Conditional simulation techno-

logies provide some answers as to how well the project, and

in particular, the orebody, is known. The challenge is to

use currently available technologies, including conditional

simulations, in a way suitable for operating mines, as well as

to develop new technologies that advance the technical capa-

bility to model and quantify uncertainty and risk accurately.

Future enhancements of today’s simulation technologies

should include methods that are computationally efficient

and also able to simulate highly complex orebodies within the

constraints of the industrial environment. An additional point

to be stressed is that the traditional, non-risk-based, opti-

mization approaches may not provide average assessments of

key project indicators or truly optimal designs in the presence

of geological uncertainty. In moving forward from the present

optimization practices and their limitations, further technical

integration of uncertainty in optimization algorithms is

needed to enhance the interaction and efficacy of open-pit

optimization and risk assessment.
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